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|Atmospheric dispersion models and nuclear emergency management
O Atmospheric dispersion models are used to predict the radiological consequences of the nuclear accidents.

O The use of fine-scale «probabilisticy meteorological forecasts instead of a single deterministic forecast improves atmospheric
dispersion forecasting (EI-Ouartassy et al., 2022).
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|Atmospheric dispersion models and nuclear emergency management
O Atmospheric dispersion models are used to predict the radiological consequences of the nuclear accidents.

U The use of fine-scale ensemble («probabilisticy) meteorological forecasts instead of a single deterministic forecast improves
atmospheric dispersion forecasting (Leadbetter et al., 2020; El-Ouartassy et al., 2022).
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U The use of a high-resolution ensemble approach in an accidental context requires the optimization of the calculation time: data transfer
and processing + dispersion calculation.

7

+* How can we reduce the number of meteorological members used at the input of dispersion models while
retaining some statistical properties of the complete ensemble?
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Clustering

| Definition and principle

U A set of machine learning algorithms designed to identify homogeneous groups within a population.
U Given a set of points (the meteorological members, in our case) and a similarity metric defined between them, find a number of
clusters (classes, groups, segments) such that :
* The points within the same cluster are very similar to each other,
* Points belonging to different groups are very dissimilar.
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| Definition and principle

U A set of machine learning algorithms designed to identify homogeneous groups within a population.
U Given a set of points (the meteorological members, in our case) and a similarity metric defined between them, find a number of
clusters (classes, groups, segments) such that :
* The points within the same cluster are very similar to each other,
* Points belonging to different groups are very dissimilar.
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|Issues

O What is the nature of the data (binary, qualitative, numerical, etc.)?

O What is the appropriate metric for measuring similarity (Euclidean, DTW, Wasserstein, etc.)?
O How many clusters can be identified in the data set (K=1, 2, 3,...)?

O Which learning algorithm?

O Comparison of different clustering results ...
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|AROME Esemble Prediction System (AROME-EPS, Météo-France)

U 16 members at a horizontal resolution of 2.5 km.

O 25 vertical levels [10 — 3000m].

U Hourly forecasts.

AROME domain and the study area

| Study area: La Hague experimental site

O Regular release of %Kr, which is a good tracer of
atmospheric dispersion (no deposition, t;/,=10.7 years).

O Well known Source Term (Orano La Hague).

-,

U The AROME-EPS-pX dispersion ensembles have already %
been validated in this area during the period [Dec. 2020 — : & A '; i/ l 7 O
Jan. 2021] : (DISKRYNOC project, El-Ouartassy et al.,2022 ). ~ b, 2 i ; ' 9

Y ‘ . A el 4

O Meteorological observations e Krypton-85 measurements
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| Number of clusters
U The number of clusters chosen in this work is K = 4 .

| Clustering algorithms used :

Complete Linkage

U Agglomerative clustering:
* Complete Linkage: The similarity between two clusters is the distance between their most distant
individuals.
* Ward : The similarity between two clusters is the variance of their union.
O Partitional clustering:
* K-means : Based on the minimization of a cost function..

| Representative member of each cluster:

a
O the member who minimizes the representativeness index : | = >

where : a is the average distance of the member from members of the same cluster,
b is the average distance of the member from members of other clusters.
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| Overview
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Clustering and calculation of the representative
member
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| Overview
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| Evaluation strategy for dispersion maps

What areas would be potentially contaminated in the next few hours
following an atmospheric radioactive release ?

Risk Area

U Each ensemble/subensemble is assigned a risk area defined
as the smallest convex surface surrounding the ensemble.

Source
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| Evaluation strategy for dispersion maps

What areas would be potentially contaminated in the next few hours
following an atmospheric radioactive release ?

Risk Area

U Each ensemble/sub-ensemble is assigned a risk area defined
as the smallest convex surface surrounding the ensemble.

Source

O We calculate the FMS (Figure of Merit in Space) temporal (A)
evolution of the risk areas of the clustering sub-ensemble (B) in
relation to the risk zone of the PEARO-pX set (A):

ANB
FMS =

X1
AUB 00
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| Impact of clustering on AROME-EPS sub-ensembles

U Spread-skill ratio:
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v' In terms of wind speed, the clustering algorithms improve the dispersion of the subsets constructed to calculate
dispersion, with a slight preference for the « complete-Linkage ».

v In terms of wind direction, the impact of the clustering algorithms is not obvious.
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| Impact of clustering on the AROME-EPS-pX sub-ensembles

Q Evaluation of #5Kr dispersion maps
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v’ Clustering algorithms improve atmospheric dispersion forecasts on average.
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| Impact of clustering on the AROME-EPS-pX sub-ensembles

QO Sensitivity to wind conditions

* A comparison of wind speed evolution and the impact of clustering on dispersion forecasts (FMS) shows that
there is a correlation between these two variables.

¢ We define 3 wind intervals:

N
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100m Wind speed (m/s)
» 1=

2021‘“01 2021'0\"09 2011‘01'“ 2021‘“33 2021'0\"\’5 2011““'11 2021‘(“'&9 2011‘0\"ﬂ 2011‘01'23 2021-‘“'15

ff100< 7 m/s : 136 samples
7 <ff100 <12 m/s : 153 samples
ff100 > 12 m/s : 143 samples
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| Evaluation of 85Kr dispersion maps

U Sensitivity to wind conditions

FMS (%)
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v" Clustering has a higher impact in low/moderate wind situations.
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| Evaluation of 85Kr dispersion maps

U Sensitivity to wind conditions
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| Evaluation of 85Kr dispersion maps

O Sensitivity to wind conditions
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Conclusions and perspectives

| Conclusions

O Clustering algorithms have an advantage over random sampling in predicting short-range atmospheric
dispersion,

O Wind is the appropriate predictor variable for the calculation of clustering,

U Clustering results are efficient in low and medium wind conditions.
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Conclusions and perspectives

| Conclusions

O Clustering algorithms have an advantage over random sampling in predicting short-range atmospheric
dispersion,

O Wind is the appropriate predictor variable for the calculation of clustering,

O Clustering results are efficient in low and medium wind conditions.

| Perspectives

O Application to an ensemble containing a relatively large number of members (PEARP, 35 members, 10km
resolution),

O Implement more complicated algorithms wherever possible (calculation time!), using more efficient distances
(Wasserstein distance) for calculating inter- and intra-cluster similarity,

O Study the sensitivity of the representative member of each cluster to the calculation method.
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Thank you !

Youness El-Ouartassy
Youness.el-ouartassy@meteo.fr



