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Atmospheric dispersion models and nuclear emergency management
q Atmospheric dispersion models are used to predict the radiological consequences of the nuclear accidents.

q The use of fine-scale «probabilistic» meteorological forecasts instead of a single deterministic forecast improves atmospheric
dispersion forecasting (El-Ouartassy et al., 2022).
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q The use of a high-resolution ensemble approach in an accidental context requires the optimization of the calculation time: data transfer
and processing + dispersion calculation.

v How can we reduce the number of meteorological members used at the input of dispersion models while 
retaining some statistical properties of the complete ensemble?
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Atmospheric dispersion models and nuclear emergency management
q Atmospheric dispersion models are used to predict the radiological consequences of the nuclear accidents.

q The use of fine-scale ensemble («probabilistic») meteorological forecasts instead of a single deterministic forecast improves
atmospheric dispersion forecasting (Leadbetter et al., 2020; El-Ouartassy et al., 2022).
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Definition and principle

q A set of machine learning algorithms designed to identify homogeneous groups within a population.
q Given a set of points (the meteorological members, in our case) and a similarity metric defined between them, find a number of

clusters (classes, groups, segments) such that :
• The points within the same cluster are very similar to each other,
• Points belonging to different groups are very dissimilar.
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inter-clusters

Minimising 
distance 

intra-clusters
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q What is the nature of the data (binary, qualitative, numerical, etc.)?
q What is the appropriate metric for measuring similarity (Euclidean, DTW, Wasserstein, etc.)?
q How many clusters can be identified in the data set (K=1, 2, 3,...)?
q Which learning algorithm?
q Comparison of different clustering results ...

Issues
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AROME Esemble Prediction System (AROME-EPS, Météo-France)

q 16 members at a horizontal resolution of 2.5 km.

q 25 vertical levels [10 – 3000m].

q Hourly forecasts.

Study area: La Hague experimental site

q Regular release of 85Kr, which is a good tracer of
atmospheric dispersion (no deposition, 𝛕 ⁄𝟏 𝟐=10.7 years).

q Well known Source Term (Orano La Hague).

q The AROME-EPS-pX dispersion ensembles have already
been validated in this area during the period [Dec. 2020 – 
Jan. 2021] : (DISKRYNOC project, El-Ouartassy et al.,2022 ).

Meteorological observations Krypton-85 measurements

AROME domain and the study area
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q Agglomerative clustering: 
• Complete Linkage: The similarity between two clusters is the distance between their most distant

individuals.
• Ward : The similarity between two clusters is the variance of their union.

q Partitional clustering:
• K-means : Based on the minimization of a cost function..

Clustering algorithms used : 

Methodology

Complete Linkage

q the member who minimizes the representativeness index : I = "
#

 
 where : 𝑎	is the average distance of the member from members of the same cluster,
                     𝑏 is the average distance of the member from members of other clusters.

Representative member of each cluster:

Number of clusters
q The number of clusters chosen in this work is 𝐾 = 4 .
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q Each ensemble/subensemble is assigned a risk area defined
as the smallest convex surface surrounding the ensemble.
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What areas would be potentially contaminated in the next few hours 
following an atmospheric radioactive release ?
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Evaluation strategy for dispersion maps

What areas would be potentially contaminated in the next few hours 
following an atmospheric radioactive release ?

q We calculate the FMS (Figure of Merit in Space) temporal
evolution of the risk areas of the clustering sub-ensemble (𝓑) in
relation to the risk zone of the PEARO-pX set (𝓐):

𝐹𝑀𝑆 =
𝓐 ∩ 𝓑 
𝓐∪𝓑 ×100

Source

(𝓑)

(𝓐)

(𝓐 ∩ 𝓑) 

(𝓐
∪ 𝓑)
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Impact of clustering on AROME-EPS sub-ensembles

q Spread-skill ratio:

ü In terms of wind speed, the clustering algorithms improve the dispersion of the subsets constructed to calculate
dispersion, with a slight preference for the « complete-Linkage ».

ü In terms of wind direction, the impact of the clustering algorithms is not obvious.

1 +∞−∞

𝑈𝑛𝑑𝑒𝑟 − 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑂𝑣𝑒𝑟 − 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
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ü Clustering algorithms improve atmospheric dispersion forecasts on average.

Impact of clustering on the AROME-EPS-pX sub-ensembles

q Evaluation of 85Kr dispersion maps

Variable = wind and Grad(T)

Results
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Impact of clustering on the AROME-EPS-pX sub-ensembles

q Sensitivity to wind conditions

ff100 < 7 m/s            : 136 samples
7 < ff100 < 12 m/s   : 153 samples 
ff100 > 12 m/s          : 143 samples 

• A comparison of wind speed evolution and the impact of clustering on dispersion forecasts (FMS) shows that
there is a correlation between these two variables.

• We define 3 wind intervals:   

Results
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Evaluation of 85Kr dispersion maps

q Sensitivity to wind conditions

ü Clustering has a higher impact in low/moderate wind situations.

ff < 7 m/s ff > 12 m/s7 < ff < 12 m/s

Results
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ff100 = 4.8 m/s 

Evaluation of 85Kr dispersion maps

q Sensitivity to wind conditions

Results
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Conclusions

q Clustering algorithms have an advantage over random sampling in predicting short-range atmospheric
dispersion,

q Wind is the appropriate predictor variable for the calculation of clustering,

q Clustering results are efficient in low and medium wind conditions.
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Conclusions

Perspectives

q Application to an ensemble containing a relatively large number of members (PEARP, 35 members, 10km
resolution),

q Implement more complicated algorithms wherever possible (calculation time!), using more efficient distances
(Wasserstein distance) for calculating inter- and intra-cluster similarity,

q Study the sensitivity of the representative member of each cluster to the calculation method.

q Clustering algorithms have an advantage over random sampling in predicting short-range atmospheric
dispersion,

q Wind is the appropriate predictor variable for the calculation of clustering,

q Clustering results are efficient in low and medium wind conditions.
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