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Motivation: historical events
> Accidental atmospheric releases of
hazardous material:
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1317 - 2011,2012,2015,2017, '37(C's-2015, , B
106 Ry - 2017.

Source location was not known at the
time when the first detections were

reported.
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either accidental or intentional,

resources is the contamination in urbanized
areas (micro-scale).
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Because, accurate modeling of atmospheric
contaminant transportation in a dense urban
area is not trivial.
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Inverse modeling: source terms estimation
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» Questions: How much material was released? When? Where? What are

the potential consequences?
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Inverse modeling: source terms estimation

Invers

> Questions: How much material was released? When? Where? What are
the potential consequences?

> Idea: Build a model of pollutant transport in the atmosphere and
compare estimated point concentrations with the measured data obtained
from sensor networks.

» Problem: Find the values of the pollutant transport model parameters,
for which outcome will be the best ,fitted” to the observational data.
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Bayesian inference

In the framework of Bayesian statistics all quantities are
modeled as random variables with joint probability
distributions.

This randomness can be interpreted as parameter variability.
It is reflected in the uncertainty of the true values.

So, in practice we can are looking for the values of parameters
which are the most probable - Posterior Probability
Distribution.
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likelihood prior
———
Tdosel0, D) 7(611)
T (dops|I)
——

evidence

7 (0|dops, I) =
—_———

posterior

& 7(dops|0, [)m(O) (1)

> 0 represents possible model configurations e.g 0 = (x,y,q,...), dobs are
observed data e.g dops = CtSj7 .., CPN e.g I background information

(e.g. meteorological measurements)

> Probability 7(0|dobs, I) of certain model configuration given observed

measurements (dobs) (also known as the posterior distribution)

> L(dops|0,I) - the probability of the data dobs conforming a given model
configuration 6

> 7(0|I) - the possible model configurations before taking into account the

measurements



How to obtain posterior distribution of model

parameters?

>

Approximate Bayesian Computation with the sequential
extension [5].

Idea: Accept 6 as an approximate posterior draw if its
associate data d is close enough to the observed data dps.

d - expected concentration in sensors locations with source 6;
setup: MODEL(6;) — d

p(d, dops) - chosen measure of discrepancy between d and dps,
€ - threshold value.

So, parameters are a sample from 7(6|p(d, dops|I) < €)
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Requirements for dispersion model for STE in urban
environment?

> Not to complicated and not required enormous computing power.

> But, should take into account necessary parameters such as wind field,
the coefficients of turbulence, weather conditions, etc.

> A short (QUICK!) computation time.

b = plime rise
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simulating the release of particles and
moving them with an instantaneous wind
composed of mean and turbulent

components.




: " Quick Urban Industrial Complex (QUIC) Dispersion
Vlodeling System Los Alamos

QUIC-URB (originally developed by
Rockle [6]) uses a 3D mass-consistent
wind model to combine adequately
resolved time-averaged wind fields around
buildings

QUIC-PLUME [7] is a Lagrangian particle

model which describes gas dispersion by

simulating the release of particles and
moving them with an instantaneous wind
composed of mean and turbulent

components.

Radioactive dispersion module is also

supported
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DAPPLE

Dispersion of Air Pollution and its

Penetration into the Local Environment

The building height 10 to 64m

Latide

Total mass emitted was 323mg of
(PMCH,CT7F14) for 15 min

10 samples taken over a 30 minute sampling

period at 18 receptor

The wind data sets take from rooftop source position x=243.3m,

Westminster City Council (WCC) (18 m) y=282.8m, z=1.5m, mass

q=323mg, duration and delay
time 1=900s, s = 0.0s

Funded by the Engineering for Health,

Infrastructure and Environment Programme
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» Algorithm - ABC with Sequential Monte Carlo, Forward
Model - QUIC , Data/Experiment: DAPPLE (28 Jun 07)

» Distance measure (Fractional Bias):

18 t Sq ASj
S 18]':1 tig Cz'SJJFCiSj

); (2)

» Source parameters vector and prior definition:
7(0Y) =(z,y) ~ U®([100, 600], [100, 500]) — (2 = 243.3m,y = 282.8m)
z ~ Gamma(3,3) — z = 1.5m
q ~ U(10,500) — ¢ = 323mg
[ ~U(0,1800) — I = 900s
s~ U(0,180) — s = 0.0s
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Framework for stochastic identification [~
of atmospheric contamination source 0.06
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APPROXIMATE BAYESIAN COMPUTATION
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{ QUIC-URB(WCC) ‘

Figure 1: Framework for stochastic identification of atmospheric
contamination source in an urban area
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Flgu re 2: Scatter plot of all samples generate in the subsequent time steps t = 2,3, ..., 10 in (z, y) space



Results of reconstruction
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Flgu re 3: The trace plots for all searched parameters 0 = (x, v, z, g, I, s) in all time steps.
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Results of reconstruction experiment A

N
Parameters  x[m| y[m] 2z2[m] q[mg] I[s]
0" 243.3 2828 15 323.0 900.0 0.0
oMAP 2035 2918 54 2657 8810 710
mean(6) 2439 2909 7.6 280.0 903.3 72.4
std(0) 1246 843 4.1 118.7  352.3 41.8

0190%(9) 350 1500 1.1  59.1  359.7 0.7
CIPF () 4662 461.6 128 461.3 1624.0 130.9

Ta ble 1: Summary of the essential statistics obtained from the results of inversion procedure.



Results of reconstruction experiment

3 Nees

Parameters  z[m] y[m] z[m] gq|mg] I[s]

0" 2433 2828 15 323.0 900.0 0.0
oMAP 2035 2918 54 2657 8810 710
mean(6) 2439 2909 7.6 280.0 903.3 72.4
std(0) 1246 843 4.1 118.7 352.3 41.8

0190%(9) 350 1500 1.1  59.1  359.7 0.7
CIPF () 4662 461.6 128 461.3 1624.0 130.9

Ta ble 1: Summary of the essential statistics obtained from the results of inversion procedure.

» Posterior distributions strongly support the correct location of
the source (z,y)



Results of reconstruction experiment

~
g nen
s[s] J

Parameters  z[m] y[m] z[m] gq|mg] I[s]

0" 2433 2828 15 323.0 900.0 0.0
oMAP 2035 2918 54 2657 8810 710
mean(6) 2439 2909 7.6 280.0 903.3 72.4
std(0) 1246 843 41 1187 3523 418

CI3%®) 350 1500 1.1  59.1  350.7 0.7
CIPF () 4662 461.6 128 461.3 1624.0 130.9

Ta ble 1: Summary of the essential statistics obtained from the results of inversion procedure.

» Posterior distributions strongly support the correct location of
the source (z,y)

» The difference between the estimated z value and target
source height equals =~ 3.5m.



Results of reconstruction experiment

~
N

Parameters  z[m] y[m] z[m] gq|mg] I[s] s[s]
0" 2433 2828 15 323.0 900.0 0.0
oMAP 2035 2918 54 2657 8810 710
mean(6) 2439 2909 7.6 280.0 903.3 72.4
std(0) 1246 843 41 1187 3523 418

CI3%®) 350 1500 1.1  59.1  350.7 0.7
CIPF () 4662 461.6 128 461.3 1624.0 130.9

Ta ble 1: Summary of the essential statistics obtained from the results of inversion procedure.

» Posterior distributions strongly support the correct location of
the source (z,y)

» The difference between the estimated z value and target
source height equals =~ 3.5m.

> The released mass is underestimated about ~ 50mg.



Results of reconstruction experiment

~
N

Parameters  z[m] y[m] z[m] gq|mg] I[s] s[s]
0" 2433 2828 15 323.0 900.0 0.0
oMAP 2035 2918 54 2657 8810 710
mean(6) 2439 2909 7.6 280.0 903.3 72.4
std(0) 1246 843 41 1187 3523 418

CI3%®) 350 1500 1.1  59.1  350.7 0.7
CIPF () 4662 461.6 128 461.3 1624.0 130.9

Ta ble 1: Summary of the essential statistics obtained from the results of inversion procedure.

» Posterior distributions strongly support the correct location of
the source (z,y)

» The difference between the estimated z value and target
source height equals =~ 3.5m.

> The released mass is underestimated about ~ 50mg.

» The most probable duration of the release was estimated
almost perfectly.



Results of reconstruction experiment

~
N

Parameters  z[m] y[m] z[m] gq|mg] I[s] s[s]
0" 2433 2828 15 323.0 900.0 0.0
oMAP 2035 2918 54 2657 8810 710
mean(6) 2439 2909 7.6 280.0 903.3 72.4
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CI3%®) 350 1500 1.1  59.1  350.7 0.7
CIPF () 4662 461.6 128 461.3 1624.0 130.9

Ta ble 1: Summary of the essential statistics obtained from the results of inversion procedure.

» Posterior distributions strongly support the correct location of
the source (z,y)

» The difference between the estimated z value and target
source height equals =~ 3.5m.

> The released mass is underestimated about ~ 50mg.

» The most probable duration of the release was estimated
almost perfectly.

» One minute delay can be seen as important.
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The framework for stochastic event reconstruction of the
atmospheric contaminant in an urban environment has been
presented.

Bayesian inference (ABC) with fast-running QUIC-PLUME

dispersion model has been successfully validated against real
DAPPLE experiment.

This lead to estimation of six atmospheric contamination
source parameters i.e.: contamination source position (z,y, 2)
in city environment, mass of release (g), start time of release
(s) and its duration (1).

Clear interpretation for decision makers.

Can be used for a radiological event.

Published: Framework for stochastic identification of
atmospheric contamination source in an urban area P Kopka,
A Wawrzynczak Atmospheric Environment 195, 63-77
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