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Motivation: historical events

I Accidental atmospheric releases of

hazardous material:

I Release of 137Cs in a steel mill in

Algeciras, Spain, V.1998 r.

I Registered in Switzerland, France and

Italy in June.

I 131I - 2011,2012,2015,2017, 137Cs-2015,
106Ru - 2017.

I Source location was not known at the

time when the first detections were

reported.



Motivation: historical events

I Accidental atmospheric releases of

hazardous material:

I Release of 137Cs in a steel mill in

Algeciras, Spain, V.1998 r.

I Registered in Switzerland, France and

Italy in June.

I 131I - 2011,2012,2015,2017, 137Cs-2015,
106Ru - 2017.

I Source location was not known at the

time when the first detections were

reported.



Motivation: the urbanized areas

I Predicting the transport and dispersion of the

contaminant becomes a critical problem for

homeland defense

I either accidental or intentional,
I either toxic or radioactive, etc
I The most difficult and requiring the most
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Forward modeling: concentration point estimation

I Questions: How much material was released? When? Where? What are

the potential consequences?

I Idea: Build a model of pollutant transport in the atmosphere and

compare estimated point concentrations with the measured data obtained

from sensor networks.

I Problem: Find the values of the pollutant transport model parameters,

for which outcome will be the best „fitted” to the observational data.
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Bayesian inference

I In the framework of Bayesian statistics all quantities are
modeled as random variables with joint probability
distributions.

I This randomness can be interpreted as parameter variability.
I It is reflected in the uncertainty of the true values.
I So, in practice we can are looking for the values of parameters

which are the most probable - Posterior Probability
Distribution.



Bayes theorem

π(θ|dobs, I)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
L(dobs|θ, I)

prior︷ ︸︸ ︷
π(θ|I)

π(dobs|I)︸ ︷︷ ︸
evidence

∝ π(dobs|θ, I)π(θ|I) (1)

I θ represents possible model configurations e.g θ ≡ (x, y, q, . . .), dobs are

observed data e.g dobs ≡ CSjt , ...., CSNt , e.g I background information

(e.g. meteorological measurements)

I Probability π(θ|dobs, I) of certain model configuration given observed

measurements (dobs) (also known as the posterior distribution)

I L(dobs|θ, I) - the probability of the data dobs conforming a given model

configuration θ

I π(θ|I) - the possible model configurations before taking into account the

measurements



How to obtain posterior distribution of model
parameters?

I Approximate Bayesian Computation with the sequential
extension [5].

I Idea: Accept θ as an approximate posterior draw if its
associate data d is close enough to the observed data dobs.

I d - expected concentration in sensors locations with source θi
setup: MODEL(θi)→ d

I ρ(d, dobs) - chosen measure of discrepancy between d and dobs,
I ε - threshold value.
I So, parameters are a sample from π(θ|ρ(d, dobs|I) < ε)



Requirements for dispersion model for STE in urban
environment?

I Not to complicated and not required enormous computing power.
I But, should take into account necessary parameters such as wind field,

the coefficients of turbulence, weather conditions, etc.
I A short (QUICK!) computation time.
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Quick Urban Industrial Complex (QUIC) Dispersion
Modeling System Los Alamos

I QUIC-URB (originally developed by

Rockle [6]) uses a 3D mass-consistent

wind model to combine adequately

resolved time-averaged wind fields around

buildings

I QUIC-PLUME [7] is a Lagrangian particle

model which describes gas dispersion by

simulating the release of particles and

moving them with an instantaneous wind

composed of mean and turbulent

components.

I Radioactive dispersion module is also

supported
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DAPPLE

I Dispersion of Air Pollution and its

Penetration into the Local Environment

I The building height 10 to 64m

I Total mass emitted was 323mg of

(PMCH,C7F14) for 15 min

I 10 samples taken over a 30 minute sampling

period at 18 receptor

I The wind data sets take from rooftop

Westminster City Council (WCC) (18 m)

I Funded by the Engineering for Health,

Infrastructure and Environment Programme

source position x=243.3m,

y=282.8m, z=1.5m, mass

q=323mg, duration and delay

time l=900s, s = 0.0s



Final Bayesian STE framework setup

I Algorithm - ABC with Sequential Monte Carlo, Forward
Model - QUIC , Data/Experiment: DAPPLE (28 Jun 07)

I Distance measure (Fractional Bias):

ρ(dt, dtobs) =
1

18

18∑
j=1

(
1

t

t∑
i=1

|CSj
i − Ĉ

Sj
i |

CSj
i + ĈSj

i

), (2)

I Source parameters vector and prior definition:

π(θ1) ≡(x, y) ∼ UΘ([100, 600], [100, 500])− (x = 243.3m, y = 282.8m)

z ∼ Gamma(3, 3)− z = 1.5m

q ∼ U(10, 500)− q = 323mg

l ∼ U(0, 1800)− l = 900s

s ∼ U(0, 180)− s = 0.0s
(3)



Figure 1: Framework for stochastic identification of atmospheric
contamination source in an urban area



Results of reconstruction experiment
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Figure 2: Scatter plot of all samples generate in the subsequent time steps t = 2, 3, ..., 10 in (x, y) space

of source location



Results of reconstruction experiment
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Figure 3: The trace plots for all searched parameters θ ≡ (x, y, z, q, l, s) in all time steps.



Figure 4: Bivariate and marginal posterior distributions for all parameters



Results of reconstruction experiment

Parameters x[m] y[m] z[m] q[mg] l[s] s[s]

θ∗ 243.3 282.8 1.5 323.0 900.0 0.0
θMAP 203.5 291.8 5.4 265.7 881.0 71.0
mean(θ) 243.9 290.9 7.6 280.0 903.3 72.4
std(θ) 124.6 84.3 4.1 118.7 352.3 41.8
CI90%LB (θ) 35.0 150.0 1.1 59.1 359.7 0.7
CI90%UB (θ) 466.2 461.6 12.8 461.3 1624.0 130.9

Table 1: Summary of the essential statistics obtained from the results of inversion procedure.

I Posterior distributions strongly support the correct location of
the source (x, y)

I The difference between the estimated z value and target
source height equals ≈ 3.5m.

I The released mass is underestimated about ∼ 50mg.
I The most probable duration of the release was estimated

almost perfectly.
I One minute delay can be seen as important.
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Conclusions

I The framework for stochastic event reconstruction of the
atmospheric contaminant in an urban environment has been
presented.

I Bayesian inference (ABC) with fast-running QUIC-PLUME
dispersion model has been successfully validated against real
DAPPLE experiment.

I This lead to estimation of six atmospheric contamination
source parameters i.e.: contamination source position (x, y, z)
in city environment, mass of release (q), start time of release
(s) and its duration (l).

I Clear interpretation for decision makers.
I Can be used for a radiological event.
I Published: Framework for stochastic identification of

atmospheric contamination source in an urban area P Kopka,
A Wawrzynczak Atmospheric Environment 195, 63-77
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