RASTEP – a versatile tool for decision support in nuclear emergency situations

Elisabeth Tengborn 5th NERIS Workshop, April 5th 2019

RASTEP – Context and SSM application

RASTEP – Context and SSM application

Lloyd's Register

RASTEP – Context and SSM application

RASTEP – RApid Source TErm Prediction

- The development of RASTEP started in 2009 in cooperation between SSM and LR.
- Provides emergency preparedness organisations with an independent view of the accident progression and possible off-site consequences.
- Model starting point:
 - Initiating event
- Model end point / results:
 - Source term rankings with associated likelihoods
- Export functionality to interface with off-site consequence analysis tools, e.g. ARGOS and possibility to export data using the IRIX format.
- Simple user interface.

RASTEP overview

Graphical user interface

Using Bayes theorem, prior belief in an event (hypothesis) can be updated given additional evidence (observation, finding):

 $P(State|Observation) = \frac{P(Observation|State) \cdot P(State)}{P(Observation)}$

Example: BBN for emergency core cooling for PWR plant

Starting point (no observations made)

Updated beliefs due to observations

Leads to update of belief in all nodes

Lloyd's Register

Source terms

 Source terms for RASTEP models are pre-calculated and can thus come from any appropriate software (MAAP / MELCOR / ASTEC etc.)

- The main requirement is that the simulations used for the source term set have a logical connection to the BBN.
- Source terms can be post-processed for customization to customer requirements, including
 - Nuclide selection
 - Source term phasing
 - Simple models for decay and growth during accident sequence

BBN and source terms - the combination

Modeling

Overview of procedure for creating a RASTEP model

- Gather data
 - Probabilistic data, mostly on function level
 - Source terms
- Create BBN with relevant level of detail in initiating events, barriers, safety functions and end states.
- Couple observable BBN nodes with questions and link them to the RASTEP GUI.
- Couple BBN end states with source term set.
- BBNs are built in Netica and source terms are gathered in Excel files. RASTEP will therefore never be a black box.
- The level of detail in both BBN and source term set is flexible.

Modelling - models developed by LR

Туре	Plant
PWR	Ringhals 3 & (4) Generic PWR
BWR	Oskarshamn 1 Oskarshamn 2 Oskarshamn 3 Forsmark (1) & 2 Forsmark 3 Generic BWR
CANDU	Generic single-unit CANDU6
VVER	Generic VVER 440-213
SFP	SFP for Halden reactor (Ongoing) Generic SFP (Ongoing)

Concluding remarks

Tool for prognosis and source term estimation

- RASTEP provides the most likely end state based on observations and best available knowledge during a nuclear accident and estimates an associated representative source term.
- RASTEP models are flexible and can be modified by the user.
- RASTEP also supports:
 - What-if-analyses in conjunction with severe accident sequences
 - Emergency response exercises

Continuous development

Examples

- Automated transfer of plant parameters into RASTEP (SSM project, pilot study ongoing)
- Fine-tuning of source term directly in RASTEP
- Possibility to display uncertainty bounds in underlying source term data
- General development of user friendliness
- Data sensitivity analysis
- Improved visualization of underlying BBN
- Built-in source term calculation engine

https://www.lr.org/rastep

Thank you

Elisabeth Tengborn, MSc, PhD, Principal consultant II Department of nuclear consulting / Deterministic safety analysis & licensing

+46 72 201 91 49

elisabeth.tengborn@lr.org

Anders Riber Marklund, MSc, PhD, Principal consultant II / Team manager Department of nuclear consulting / Deterministic safety analysis & licensing

+46 70 230 41 14

anders.ribermarklund@lr.org